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A new solution-adaptive gridding method has been developed for the solution
of discretized systems of coupled nonlinear elliptic partial differential equations on
rectangular domains. Such a method is required for the numerical solution of realistic
combustion problems, in which physical quantities may vary by orders of magnitude
over one-tenth of a millimeter at atmospheric pressure, or over micrometers at higher
pressures. The local rectangular refinement (LRR) method maintains orthogonality
at grid-line intersections but lifts the tensor product restriction common to traditional
grids, producing unstructured grids. Governing equations are discretized throughout
the domain using newly derived forms, and Newton's method is used to solve the
resulting system. On a simple test case with a known solution, the LRR method and
its new discretizations are found to be more accurate than gridding methods represen-
tative of those appearing previously in the literature. For the more realistic problem
of nonreacting driven square cavity flow, the LRR solution agrees very well with
previously published data. When the LRR method is applied to a practical reacting
flow (a rich axisymmetric laminar Bunsen flame with complex chemistry, multi-
component transport, and an optically thin radiation submodel), grid spacing highly
influences the inner flame’s position, which stabilizes only with adequate refinement.
The vorticity—velocity formulation of the governing equations is shown to produce
valid results when used in conjunction with the LRR gridding technique. Further-
more, each LRR grid is used to form a nonuniform equivalent tensor product (ETP)
grid and also, in most cases, an equispaced fully refined (FR) grid; these additional
grids are supersets of the LRR grids and thus contain refinement in exactly the same
regions. Performance comparisons between the LRR, ETP, and FR grids indicate
that the LRR method provides substantial savings in execution time and computer
memory requirements, without compromising solution accura@y1999 Academic Press

Key Words:adaptive methods; mesh refinement; finite difference discretizations;
square cavity flow; axisymmetric laminar flame.

684

0021-9991/99 $30.00
Copyright®© 1999 by Academic Press
All rights of reproduction in any form reserved.



LOCAL RECTANGULAR REFINEMENT ADAPTIVE GRIDDING 685

1. INTRODUCTION

Combustion, a thermochemical and fluid dynamic process in which fuel and oxidi:
meet and energy is released, is of fundamental importance. Despite technological adve
in computer speed and size, it is still not possible to model accurately flames with b
complex chemistnand complex geometry, because of the large computational grids al
memory required by conventional methods. Memory demands are particularly high wi
the governing equations are solved using a coupled approach necessitated by the h
reactive nature of combustion problems, instead of the field-by-field (or “one variable
a time”) solution procedure often employed in nonreacting fluid flow problems. This si
constraint generates a need for numerical techniques which will solve a given probler
a desired degree of accuracy, using fewer grid points than a traditional mesh, while at
same time incorporating efficient use of memory and displaying competitive solution tim
The combination of sophisticated adaptive gridding and realistic combustion model
is the focus of the current work. The present paper develops a new adaptive gridc
method and validates it using three test problems (two nonreacting flows and one reac
flow); additional combustion applications are explored elsewhere [4, 5, 46], with the lat
reference being the first author’s dissertation.

One of the most important components of the numerical solution process is the ¢
chosento discretize the domain. Ideally, grid points should cluster in regions of high solut
activity, but elsewhere only a few points might be needed to resolve the solution. A m
exhibiting these characteristics can be produced via an iterative adaptive process w
incorporates several ingredients, such as the weight functions for equidistribution; che
of mechanism for point addition or point moving; retention or nonretention of tensor prodt
structure; maintenance of orthogonality at all, some, or none of the grid-line intersectic
various mesh constraints; the discretization forms; and the adaption termination criteria.
all choices will produce viable methods. Existing techniques can be classified as belon
to one of three categories, as follows.

Globally refined rectangular solution-adaptive gridding results in nonuniformly spac
meshes with a tensor product structure, meaning that every grid point is located at the i
section of two grid lines, each of which extends from one side of the domain to that oppos
This technique is rooted in one-dimensional mesh equidistribution and its supporting the
[8, 24, 28, 37]. A major advantage to this type of gridding is that the derivatives rems
easy to calculate. In various applications (for example, [39, 42]), grid spacing is continue
altered, based on weight functions comprising the gradient and curvature of the solu
iterate [40]. Unfortunately, each time a grid line is added with the intent of reducing t
error in a particular region, points are unnecessarily introduced at each intersection of
new line with all perpendicular mesh lines.

Inthe second category of solution-adaptive grid formulation, intersecting grid lines are
longer constrained to meet orthogonally, and the curvilinear grids in physical space ma:
mapped to simple tensor product grids in computational space. Weight functions are a
employed in forming the mesh, but extreme deviation from orthogonality must be avoic
in order to limit truncation error. Existing work can be divided into two groups: alterna
ing adaption and solution, which has been applied to droplet burning and one-dimensi
premixed flames [17], and to premixed flame propagation in two dimensions [11]; and
multaneous computation of node positions and solution, in which the physical coordine
become two additional dependent variables. The latter techniques were pioneered by
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more recently, similar methods have been applied to basic test functions in one and thre
mensions [32]. Unfortunately, such methods make linear problems nonlinear and nonlir
problems much more nonlinear, limiting their practicality.

The third category of solution-adaptive grid construction is that of locally refined rec
angular gridding. The grid is refined through cell subdivision, which occurs without t
global introduction of many unnecessary points—a major advantage. Although the der
tives do not require transformation to a computational space, the loss of the tensor pro
structure increases the difficulty of finding neighboring points. Another challenge lies
properly treating points at the interfaces between different refinement levels of the me
Despite such complexities, these methods have been utilized in a variety of application
two-dimensional local mesh refinement method consisting of a base grid with superimpc
finer submeshes was developed and applied to hyperbolic conservation laws [6]; this me
was later extended to three-dimensional hyperbolic problems [3]. In such applications,
submesh solutions are advanced in time independently of one another, and values ar
riodically updated at points common to more than one mesh. Similar methods have &
used for incompressible flows [21] and for premixed Bunsen flames with one-step che
istry approximations [14, 31]. Such methods, however, cannot be reasonably applied to f
elliptic realistic combustion problems, in which simultaneous solutioalbgrid points is
necessary for obtainingapidly converging accurate solutions [48]. This disadvantage is
overcome by the local rectangular refinement (LRR) method [46], which incorporates
simultaneous solution of all governing equations at all points in the domain by a damp
modified Newton’s method. (It should be noted that while other combustion researcherst
successfully implemented field-by-field solvers on unstructured grids, they have thus
solved only diffusion flame problems with one- or two-reaction chemistry approximatio
[34]. Spatial gradients of minor chemical species not present in such approximations ar
order of magnitude larger than gradients of the major species; gradients of minor specit
premixedlames (such as Bunsen flames) are larger by yet another order of magnitude.
LRR method has been used successfully to solve both diffusion flames and Bunsen fle
incorporating complex chemical mechanisms [4, 5, 46], including the final application
the present paper.)

The remainder of the paper is organized as follows. The LRR solution-adaptive gridd
method is examined in detail in Section 2. Section 3 develops new discretizations and
coarse—fine interface treatments, the accuracies of which have been tested against tradi
discretizations appearing in the literature. Section 4 discusses the nonlinear system s
and also explores the nonstandard sparsity structure of the Newton’s method Jacobiar
trix, produced by the new inter-point couplings of the discretizations. In Section 5, three.
plication problems are posed and solved: numerical results are evaluated for the temper
field in a rectangular heated plate; the temperature and flow fields of thermally and dyn
ically driven square cavity flows; and the temperature, flow, and chemical species fields
rich Bunsen flame. Each of the latter two problems is governed by a different set of coup
nonlinear, elliptic partial differential equations, the vorticity—velocity formulations of whicl
are seen to produce valid results when used in conjunction with the new gridding technic
In addition, performance and accuracy comparisons are made among LRR solutions, ¢
tions found on equivalently refined tensor product (ETP) grids (formed by extending g
lines of the LRR grids to each domain boundary), and solutions found on equispaced f
refined (FR) grids. All calculations presented in this paper were performed on an IE
RS/6000-590 computer. Finally, Section 6 draws conclusions and outlines future work.
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2. LRR SOLUTION-ADAPTIVE GRIDDING ALGORITHM

The first step in any computational method is the discretization of the physical dome
In general, however, the purpose of grid adaption is defeated if too unsuitable a gri
imposed on a problem at the start, since the legacy of the initial grid may be too strong
the adaption process to overcome. A balance must be struck between too few and too 1
points, which can often be done only through experience. In the LRR solution-adapt
gridding method, the initial grid may be an equispaced or nonequispaced orthogonal te
product grid, subject to two constraints. First, no part of the domain may become entir
devoid of points, so an upper limit (0.25) is imposed on the ratio of the maximum me
spacing to the domain length, in each coordinate direction. Second, the mesh is buffere
restricting the ratio between adjacent point spacings, which, in turn, limits the truncat
error; for the current applications, the ratio must fall between2ahd 2.5. It should be
noted that while the nonreacting flows explored in the present paper begiaquitpaced
starting grids, the LRR method has been developed for the general caseenfuispaced
starting grids. As will be demonstrated via the rich Bunsen flame application of the pres
paper, the latter grids are indispensable for initiating the adaptive solution of full-chemis
combustion problems [4, 5, 46], in which a small grid spacing near the burner mouth i
key component in obtaining a stable converged solution, regardless of the spacing in
rest of the domain.

2.1. Mesh Structure

The LRR starting grid is referred to as the Adaption 0 grid or base grid, because its po
will be present in all successive adaptions. The cells, or boxes, of this grid will be labe
Level 0 boxes. This mesh is composed of two types of points, as shown in Fig. 1: inte
points which have nine-point stencils associated with them (indicated by (a)), and exte
boundary points which have either six-point (b) or four-point (c) stencils. The members
each stencil will be referred to by their compass direction relation to the central point P (
E, S, N, SW, SE, NW, or NE).

During the adaption process, individual boxes of the grid are flagged (as will be detai
later) for subsequent refinement, which entails placing a nine-point stencil within each b
The existing corners of the box become points SW, SE, NW, and NE of the new stencil.
central point is added at the box’s center, and, if necessary, some or all of the W, E, S,
N points are also added, depending upon the configuration of the surrounding mesh. T
the refinement process subdivides the original Level 0 box into four smaller Level 1 bo;
of equal size. The stencil which has been added during this process is said to be of Lev
Itis evident that a Levell box will have dimensions equal ((%)'- times the dimensions of
the Level 0 box within which it is located.

Points in an adapted LRR grid commonly fall into three categories: regular interior poil
(points with nine-point stencils, at which four boxes adjoin); internal boundary points (poir
at the intersection of three boxes); and external boundary points (points touching fewer
three boxes). Internal boundary points lack a full computational stencil, since they lie
an interface between two different levels of refinement. Discretizations at such points
greater sources of error, especially when interpolation is substituted for governing equa
discretization. In order to limit the rapidity with which grid spacing changes and, in tur
control the truncation error, the grids are forbidden to have two adjacent internal bounc
points.
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FIG. 1. Example of a nonequispaced initial grid for the LRR method, indicating a nine-point stencil at :
interior point (a), a six-point stencil at an external boundary point (b), and a four-point stencil at an exter
boundary corner point (c).

The effect of this constraint is shown in Fig. 2. The first grid (a) contains two occurrenc
of pairs of adjacent internal boundary points (circled) and therefore violates the previol
stated grid rule. This situation is remedied by refining additional cells, as demonstra
in (b); however, the resulting mesh is now subject to a second constraint, namely that
boxes meeting at any single point cannot differ by more than one level from each otl
The circled point is located at the convergence of four boxes, but the box to its up
left is two levels coarser than that to its lower right. Therefore, one more cell must
refined before the grid is acceptable, as in (c). In fact, all grids which obey the second
rule automatically satisfy the first. Application of these two grid rules results in a limite

a b c

38 H 2=

FIG. 2. Violation (a) and repair (b) of adjacent internal boundary points, producing an adjacent box-le
violation, which is then repaired (c).
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number of allowable mesh configurations, each consisting of one, two, three, or four bc
which meet to define a central point P of a computational stencil. There are 15 allowe
regular interior configurations, 4 internal boundary configurations, and 16 external bounc
configurations; all configurations are composed of reflections and/or rotations of 9 be
configurations. For further details, as well as configuration diagrams, see [46]. No ot
configurations are admitted by the grid rules.

By examining several configurations, as has been done in [46], it becomes apparent
the number of boxes which must be refined due to the addition of a single new stenc
bounded. This limit exists because the original grid, prior to that first added stencil, m
have already contained a certain degree of refinement in order to satisfy all grid constra
The least upper bound (LUB) on the number of possible refinements caused by the cre:
of a single stencil of LeveM is

LUB = 3maxM — 1,0) + 5maxM — 2, 0). 1)

It is important to be able to derive such a limit, both to ensure that the grid constraints
not force complete refinement of the entire grid and to aid in programming the algorithi

2.2. Solution-Adaptive Refinement

One of the four fundamental components of adaptive gridding, as described in [4
is “a means for communicating the need for a redistribution of points in the light of tl
error evaluation, and a means of controlling this redistribution.” For two-dimensional loc
gridding, various researchers have tried several methods of flagging cells for refinem
The least automated method is that employed by [9] in the solution of an axisymme
laminar diffusion flame: manual refinement of cells knoapriori to be located near
the flame front. A more practical method for targeting cells is the equidistribution of
positive weight function, which is equivalent to minimization of a grid property. Points wi
be made to cluster where the weight function is large, so it must contain some mea:
of the rapidity of change of the solution. The weight functions of [14, 31] contain line:
combinations of first and second derivatives of some of the dependent variables, s
these best approximate trends in the truncation error. In [49], circulation around each
is examined, and refinement occurs when a preset value is exceeded; this techniq
equivalent to using a weight function.

In the present method, weight functions are used to determine which grid cells are t
refined and to test grid termination criteria. Firfsie, weight functions are formed at the
center of each box, wheidyepis the number of dependent variables present in the physic
problem. These weight functions are then used to cidgignew grids, the union of which
forms the actual single new grid. The use of tig, weight functions could be interpreted
as the employment of a single weight function which, in each box, is the maximum of t
existing Ngep Weight functions. However, the normalization procedures used here neg
the exact equivalence of these approaches.

Because each of théyep weight functions is to be formed at each box’s center, it will use
dependent variable values from each of the four corners of that particular box, since tt
values can be easily accessed. Thus, only first derivatives will be preséhtimce higher
derivatives require values at additional grid points. It should be noted that weight functic
based only on first derivatives may contain some numerical fluctuation stemming fr
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local solution error within the bounds of the tolerance to which that solution was previou:
determined. However, the weight functions are first smoothed, as will be described sho
and then globally subequidistributed, with both processes serving to minimize greatly
effect of any spurious local fluctuations. Itis also true that the weight functions do not cont
a direct approximation of truncation error as is sometimes the case in adaptive meth
because such an approximation would require at least 10 times as much computation &
current approach (for a practical calculation containing 10 to 20 derivative terms in e:
of its governing equations, on average); the additional computational cost is not warran
given the manner in which the weight functions are employed.

The following form has been chosen for the weight function,

(&) (5L
X |y Y |p
(&) (&)
X |y Y [y
where thef, (k=1, 2,..., Ngep are the dependent variables, subsdiipenotes the box
number, and superscript U stands for “unsmoothed.” If any dependent variable happer
be constant over the entire grid, the denominator becomes zero, provisions for which |
been made in the program. The weight function includes the additive constant “1” to tem
solution adaptivity with grid uniformity. The derivatives in (2) are discretized as follow:

whereAx and Ay are the box dimensions, and new subscripts represent lower left, low
right, upper left, and upper right:

H%ﬂ _ 1—|:(fk,UR_ foun) | (fir = fk.LL)}
B

o

WX, y) = 1+ )

max
b

X 2 AX AX

3)
afc] _ I[(fur — fiir) n (fioue — fi)
9y llg 2 Ay Ay '

The error terms (not shown) are second ordekinandAy.

The overall character of adaptive grids reflects the nature of the weight functions; th
smoothing the weight functions indirectly smooths variations in the grid spacing. A Laplac
type filter is used, discretized differently than other LRR derivative discretizations, sin
the weight functions are associated with tiexesrather than with the grid points them-
selves. At horizontal (vertical) boundari@d)V/ay? (3°WW/dx?) is approximated by zero.
This approximation means that the weight functions at the boundaries are smoothed u
information from along the boundaries only, which has, in practice, no effect on the amo
of refinement at the domain boundaries. The grid rules allow 36 interior box configuratio
28 boundary box configurations, and 32 corner box configurations. All of these confi
rations are superpositions of rotations and/or reflections of only five base configuratic
and a Laplacian discretization has been derived for each, as detailed in [46]. Discretiza
of the zero Laplacian is simply a mechanism through which to create a smoothing fi
for the weight function values. It can be recast into a more useful form by solving for t
value of the weight function at the center of the central box, which is then averaged w
the unsmoothed value to produce the smoothed weight function. This process, which ¢
stitutes a single smoothing pass, is performed on each weight function in each box, \
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the exception of the four domain corner boxes, whose weight functions remain unchan
The number of smoothing pass@&&m, must be specified and is typically 8 to 10.

During the adaption process, the goal is the creation of a grid on which the wei
functions aresutequidistributed, meaning that the following inequality will be satisified fo
each dependent variabfg, for each bo in the grid:

/ Wib(X, y)dx dy< C. (4)
Boxb
This expression can be rewritten in a more useful form as
1
—/ Wip(X, y)dxdy=< 1. )
Ck Boxb

The double integral is approximated by multiplying the integrand, evaluated at the t
center, by the area of the box. If the left side of (5) exceeds unity, then the factor by wh
it is in excess equals the number of boxes into which bawrust be divided in order to
achieve subequidistribution. However, any given box is not allowed to undergo more t
one refinement during a single sweep through the grid, so if the left side exceeds 4, a stz
subequidistribution will not immediately be reached when the box is quartered. If, inste
the left side is less than 4, refinemeavitl result in local subequidistribution.

In practice, the constan€ are found first, by integratingVk ,, over the entire domain
and dividing by the number of boxéds, SO that the quantity on the left side of inequality
(5) can be calculated for each valuekoindb. This value is then divided byequ;, a user-
specified parameter typically ranging from 1.5 te &y, is chosen as 2 for the application
problems presented here. The purpose of this division is to avoid overdoing the refinen
process, which may occur if several of the left-side values are only slightly greater thal
and it also allows the adaption to proceed in a more controlled manner. Interpolation c
the new points is a simple averaging process, since any new W, E, S, or N point lies half
between existing points. Dependent variable values at the central point of the new ste
are approximated by averaging the values from the four corners of the refined box.

2.3. Increasing Grid Robustness

Not only the magnitudes of dependent variables at given locations may change as
grid is altered. If the grid has been greatly refined in the region where the high gradie
were originally located and then the very act of refining (and then re-solving) causes th
gradients to migrate, successive grids will contain unnecessary points in the region
was initially refined. Therefore, remeshing is performed at the start of each LRR adapt
which removes any unnecessary refinement. The remeshing time depends sdigly on
and Nps, SO for a given problem size, the more complex the governing equations (and t
the longer the solution process), the smaller the percentage of the total run time th:
occupied by remeshing. In the nonreacting flow applications examined in the present pe
remeshing consumes about 0.2% of the total CPU time. However, in a practical combus
calculation such as the rich Bunsen flame explored in the present paper or the flame
[4,5, 46], for example, remeshing occupies roughly 0.001% of the total CPU time, with t
remainder spent on the Newton solver (Jacobian formation: approximately 90%; soluf
of the resulting linear system: approximately 10%).

If too small an area is refined, the front of interest may try to equilibrate at a positi
beyond the refined area, becoming falsely trapped at the coarse—fine interface. In addi
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because the discretization errors scale as spatial derivatives of the dependent varic
error at internal boundary points could be reduced if interfaces were made to occur fur
from the region of high gradients. To remedy both problems, the region of refinemen
extended in a controlled manner by a process referred to hdagering At the start of
each adaption, certain cells are flagged for refinement based on weight function exce:
as described above. Then, any cells which are withigt, 4 boxes of these are also refined,
thus surrounding the originally refined area withye: 4 layers of refined cells, wherd
refers to the adaption number.

The layering parametéNiaye 4 is calculated based on the user-specified number of laye
of refinementNjaye;1 desired during the first adaption. Typical valuesNpye;1 are less
than 5. The number of layers with which eligible cells will be surrounded during Adaptic
A can be defined recursively as

Niayer4 = MiN[0, 2 - (Niayer 4-1 — D]; (6)
the equivalent nonrecursive definition is given by
Niayer.4 = min[0, 247 - (Niayer1 — 2) + 2] 7)

Had Niayer 4 been chosen independent of the adaption numiehen the actual width of
the buffering layer would decrease by a factor of 2 with each successive adaption; tl
to maintain adequate layering, the parameNgge, 4 must depend opd. However, it is
important to have the layered region from one adaption fall within the layering from tl
previous adaption, because this means that successively smaller areas are being r
due to layering. That this important criterion is met can be seen in recursive definiti
(6). A second key feature of thjayer 4 definition is that as4 — oo, the layering region
thickness approach@Maye,,l — 2), as measured in terms of Level 0 box widths. More
generally, the layering region thickness approaches a nonzero limit, and it approaches
limit from above Such behavior is required in order to avoid the placement of coarse—fi
grid interfaces infinitesimally close to the region of high solution activity.

An example of layering is shown in Fig. 3, in which the number of layers is 1, fc
simplicity. A single cell (referred to as a primary cell) has undergone refinement beca
of weight function excesses, shown in bold. Without layering, the final state of the g
would be as pictured in (a). However, with layering, a few additional cells (seconde
cells) are refined (b), to move the grid interfaces further from the region of high soluti
activity, thus reducing the error and aiding the convergence process. Dotted lines indice
cell refinement performed so that the grid obeys all grid constraints. To avoid unneces:
refinement, no secondary cell is refined if it is already of a finer level than the primary c

a b

H

FIG. 3. Grid before (a) and after (b) layering. Dotted lines in (b) indicate additional refinement forced by gr
constraints.
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Layers are put around only those primary cells being refined duringuttientadaption; if
each adaption were to include the layering of previously refined cells, then eventually
entire grid might be refined.

Finally, the mesh must undergo one last sweep to remove single-box holes, which o
when all boxes surrounding a given box are refined, but the central box has not been fla
for refinement. This situation does not violate any prescribed grid criteria, but if the cen
box remains unrefined, the midpoints of its sides are four internal boundary points, at wt
the discretizations are less accurate than at regular interior points. If, on the other hand
central box is refined, entailing the addition of only one point, the four internal bounde
points are transformed into regular interior points. Clearly, the benefits of eliminating fc
internal boundary points far outweigh the cost of adding a single point. This algorithm ac
fewer points than that employed by some finite element researchers [1, 2]. Single-box |
removal is also performed on boxes along the external domain boundary, as long a:
surrounding boxes belong to a finer level than the box under consideration.

Interpolation is used to form an initial guess on the new grid, which will then undergo
iterative solution process (i.e., Newton’s method); interpolation is never used to produc
final solution. The overall adaption process terminates when the smoothed weight funct
are subequidistributed to within 5%.

3. DISCRETIZATION TECHNIQUES

Given a particular point P, how are the remaining points of its computational ster
chosen? In the majority of the literature, finite difference discretizations of derivatives
unstructured rectangular grids use single-scale stencils (see, for example, [3, 6, 14
31, 44]). In such an approach, the chosen stencil is the smallest such that

XNE — XN = XsE — Xs = AX,, YNE — YE = Yaw — Yw = AYy,

XN — XNw = Xs — Xsw = AX_, YE — YsE= Yw — Ysw = Ay_,

(8)

while at the same time at least one of the four rectangular “macro-cells” comprising
stencil (P-W-SW-S, P-E—-NE-N, P-S-SE-E, P-N-NW-W) must have no internal
structure, as shown in Fig. 4. Derivatives are discretized in the same way as on glob
refined rectangular grids. In general, such discretizations are first order in the grid spac

NW N NE

T
Ayy

4 W P E
Ay_

4 |sw s SE

I: >=: ={
Az_ Azy

FIG. 4. Example of a single-scale computational stencil.
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a b
NwW N NE NW N NE
w P E w P E
SW S SwW S SE
SE
c d
NE NE
NW N NW
w P E w P E
s SE SW S SE
SW

FIG.5. Examples of multiple-scale computational stencils.

although there do exist nonuniform grid spacings for which the error is better than first or
However, only in the equispaced case is the error truly second order in the grid spacing.
largest drawback to single-scale discretizations is that their use precludes the conserv
of fluxes across grid interfaces.

Inthe current research, however, derivatives at regular interior points (and domain bot
ary points) are discretized in a novel multiple-scale way, which couples the variable val
at points belonging to different levels of the mesh. Given a point P, W is the first point ¢
countered when proceeding westwards from P; E, S, and N are the first points encount
when traveling in their respective compass directions from P. Point SW is the lower left ¢
ner of the box to the lower left of P, SE is the lower right corner of the box to the lower rig
of P, and so on. Thus, the points closest to central point P make up the multiple-scale ste
Four examples are shown in Fig. 5, and [46] details the full range of multiple-scale st
cils, including the corresponding derivative discretizations; representative discretizati
are also given in the appendices of [4].

In addition to the natural coupling between information of differing length scales, multip
scale discretizations more firmly tie together the solution values at the internal bounc
points with those at regular interior points. This connection helps to overcome wha
traditionally a weak link in unstructured rectangular gridding: inaccurate determination
the solution at internal boundary points. Discretizations, presented in [4, 46], have b
derived by combining function-value Taylor expansions at neighboring points about pc
P and then eliminating as many unwanted terms as possible. In 9 of the 15 possible al
able mesh configurations around regular interior points, the multiple-scale and single-s
discretizations are of the same order. Moreover, the multiple-scale truncation errors ar
smaller than the corresponding single-scale ones by a factor of either 2 or 4; example:
given in Appendix A of [4]. In the remaining six cases, the multiple-scale stencils produ
truncation errors which are first order, regardless of the spacing of the underlying grid. H
ever, this behavior is far outweighed by the benefits of numerically coupling informati
from different length scales, as will be seen later.
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[ NW NE
Ay,
W P E
Ay-llsw s SE
Az | Az

FIG. 6. Internal boundary point lacking a northern neighbor.

Treatment of the internal boundary points is much less straightforward. The possibilit
examined here will focus on an internal boundary point P lacking a north neighbor, shc
in Fig. 6; although the displayed base grid is uniformly spaced in each coordinate direct
such spacing is not required. The majority of the literature dealing with finite differen
ing on unstructured grids uses a two-point linear interpolant (see, for example, [3, 6,
49]) to replace the governing equation for each variable at P. This two-sided interpol
(W and E) is accurate to first order, with a second-order error. However, when P app
within a discretization scheme centered at one of its neighbors, this error contributes f
or zeroth-order error if the discretization is that of a first or second derivative, respectiv
A smaller group of researchers (see [13, 14, 31, 44]) uses a five-point interpolant (W
S, SW, and SE), accurate to second order, which contributes either second- or first-c
error to first- or second-derivative discretizations at neighboring points, respectively. [
spite this improvement, the five-point interpolant’s one-sidedness can produce unwa
solution oscillations. Higher-order interpolating polynomials involve more points, destr
the structure of the Newton’s method Jacobian matrix (producing more than nine non:
blocks per block row), and are even more oscillatory.

The current research explores discretization of the actual governing equations a
ternal boundary points as an alternative to interpolants. For the configuration in Fig
x-derivatives can be discretized using traditional three-point centered differences, wt
are flux-conservative. The discretizationdadf/dy, however, can be used to illustrate a new
set of discretizations, to be referred to as a “pseudo-nine-point” treatment, which has
derived and is presented in detail in [46] and in Appendix B of [4]. By averaging valu
from points NW and NE, a pseudo-north neighbor can be created for internal bounc
point P. Such a pseudo-point will appear neither in the grid nor in the discretized gove
ing equations, but, in discretization forms normally useddimbally refined rectangular
grids, dependent variable values at wivatuldbe point N are replaced by the pseudo-nortt
neighbor’s values. The first-derivative discretization becomes

[[afﬂ (e faw) — fs
8y =] (Ay+ + Ay,)

—4fxx(A%) = 3fyy(Ay)? ; _ N C)
T3ay) s , if Ay, =2Ay_ = Ay;

— fx(AX)? = fyy[(Ays + Ay )(Ay, — Ay)]
2(Ay; + AYD) ’

Error ~
otherwise

This error term is first order in the grid spacing, and the presendg,afomes from the
x-direction interpolation used to produce values at the pseudo-north point. Fortunately,
coarser areas of the grid (i.e., the northern end of this stencil) have less sharply van



696 BENNETT AND SMOOKE

solution derivatives. Furthermore, because of the use of layering, most internal bounc
points occur in noncrucial areas of the grid. Therefore, the error is small, in practice. T
derivatived? f /9y? is treated in a similar manner.

A disadvantage to the pseudo-nine-point discretizations is their lack of flux conservati
which is especially important at grid interfaces, where the length-scale change artific:
imposed by the grid may introduce spurious phenomena. The remedy lies in choo:s
an imaginary control volume associated with point P, and applying Green’s theoren
the plane to an appropriate integral. The resulting flux-conservative expression for
first derivative has not yet undergone completion of testing within the algorithm. Howev
preliminary results indicate that this discretization may merit additional investigation. Asi
from the results presented in Fig. 13 (in which various discretizations and interpolants
examined), all calculations presented here employ pseudo-nine-point discretizations a
internal boundary points.

Important to further exploration of flux-conserving discretizations is the concept of gr
link reciprocity: if point A is involved in point B's computational stencil, then B is also ¢
member of A's stencil, and if A imotin B's computational stencil, then B witiot be in
As stencil. Flux conservation requires the representation of a flux leaving one grid pc
and entering the next to be formulated in exactly the same manner within discretization
each of the two points involved. The multiple-scale approach for the regular interior poi
and domain boundary points, coupled with the two- or five-point interpolant at interr
boundary points, preserves grid link reciprocity. However, use of the interpolants confou
any attempt at flux conservation, a situation which can be improved only by discretizing
governing equations at the internal boundary points. Unfortunately, utilizing the pseu
nine-point discretizations destroys the grid link reciprocity. Since it is not possible, with
the nine-point stencil constraint, to conserve flux at all points in an LRR grid, a comprom
is made. Duringc-derivative discretization, the left (right) face of each control volume i
located halfway between points P and W (E); federivative discretization, the bottom
(top) face is halfway between points P and S (N). No control volumes protrude beyc
the domain boundary. Near points other than internal boundary points, these two set
control volumes intersect and yet neither overlap nor leave gaps in the domain, so onl
the internal points boundary are two sets truly used.

Convective terms are discretized differently than other terms involving first derivatives,
order to avoid the unphysical oscillations or iterative-method divergence commonly cau
by the use of centered differences on these terms. Traditional upwinding schemes
introduce artificial viscosity effects [35] at high Reynolds numbers [16] or for insufficientl
refined grids. The generalized discretizations derived here retain this feature, which
be minimized with a fine enough grid. Discretizations of convective derivatives on LR
grids are a generalization of traditional upwind differencing. For regular interior points, t
traditional scheme itself is used. At internal boundary points, discretizations utilizing t
philosophy of the pseudo-nine-point approach have been derived.

As an example, an internal boundary point P lacking a north neighbor is again conside
shown in Fig. 6. Values at the NW and NE points are averaged and then used in plac
the N values in the traditional scheme, resulting in

1 1 1 _ .
o Z[UP“F Z(UNE+UNW)][ 5 (fne + faw) fP] ’ if 1 [UP + ;(UNE + UNW)] <0,
ve— | = AV 2 2 (10)
yllp 3 (wp+vs)(fp— fg)
Ay J

if %(vp + vs) > 0,
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which has a first-order error associated with it. The interpolation error, which is responsi
for a term in the truncation error involvingx, is of the same order as the rest of the erro
and thus does not heavily influence the accuracy. The one drawback to this discretiza
however, is that it is not flux-conservative. More recently, a flux-conservative form has be
derived by the authors and shows promise (please see Appendix C of [4]); this form, al
with the flux-conservative first-derivative discretization mentioned above, may be examil
in future work.

Even the potential inclusion of the two flux-conservative forms currently under inves
gation, mentioned above, will not render the LRR method a completely flux-conservat
one; as stated earlier, it is impossible to conserve flux at all points in an LRR grid wh
using only nine-point stencils. However, as pointed out in [27], it is not possible to achie
simultaneously both flux conservatiandaccuracy. This reference states that, at grid inter
faces, “conservation proves to be an important property mostly in cases of moving shc
for accurate prediction of their location and speed. Conversely, accuracy is more of an i
in a boundary layer, since the second-order derivatives (viscous terms) are importan
[27, p. 129]. The reader is reminded that the LRR method has been developed with a \
toward low Mach number laminar flame applications [4, 5, 46], for which accuracy is cruci

4. NUMERICAL SOLUTION PROCEDURE

Discretization of the governing equations produces a systeNrpEoupled nonlinear
equations, where the number of equatidfg equal Nps multiplied by the number of
dependent variableBlgep at each grid point. This discretized system can be written i
residual form as

F(U) =0, (11)

whereU is the unknown vector. Newton’s method will be used to seek a solutidio this
system, given an initial gue4s®. At the nth iteration of the method, the+ 1st solution
iterate is formed from thath iterate through the equation

JUMHU™ —UMm = -A"FU™, n=0,1,2,.... (12)

The Jacobian matrix is given kU™ =aF(U")/9U, and the parametesf’ (0< A" <1)
multiplicatively damps the Newton correction [12].

If the solution is converging quickly enough (as quantified in [38] via a combination
correction step norms, preset constants, and iteration number), then the previous Jac
can be reused. This modified Newton’s method displays approximately linear converge
but the computational time may be shorter overall simply because of the reductior
the number of time-consuming Jacobian evaluations. The Newton iteration is conside
to have converged when the 2-norm of a scaled correction vector is less than a pr
problem-specific tolerance. Several steady-state solves may be performed consecut
with successively tighter tolerances. The spatially elliptic discretized governing equati
can be made parabolic in time by appending the t@hiot to the residual form of the
equations [41]. Inclusion of the transient terms makes the Jacobian more diagonally d
inant, generally improving convergence of the linear algebra solver. In addition, the se
Jacobian is used for several time steps, saving computational time. The time step is ch
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adaptively, as in [42]. Depending upon the difficulty of the application problem, the tim
relaxation procedure may be employed for a specified number of time steps, prior to
solution of the steady-state equations.

Regardless of the Jacobian structure, which will be addressed below, applicatior
Newton’s method has linearized the original system of equations. Based on the results
linear system solver study [20], the bi-conjugate gradient stabilized (Bi-CGSTAB) meth
[47] has been chosen, with a Gauss—Seidel preconditioner. The linear system solv
considered to have converged when the 2-norm of the scaled residual vector is less th:
equal to one-tenth of the tolerance used in Newton’s method.

In practice, since all computational stencils used here employ at most nine points,
Jacobian matrix will contain a maximum of\ﬁeprts nonzero entries. Their location de-
pends upon the numbering scheme by which the equations are ordered, which is usi
the same as the grid point numbering scheme. A closer examination of Jacobian struc
requires the concept of the “Jacobian ordering” of grid points (the ordering by which t
corresponding equations are arranged in the Jacobian), which, in the current research
differ from the actual grid point numbering scheme (to be referred to as the “physical g
point ordering”). Because the grids produced via the LRR method are unstructured, the
points are numbered in the sequence in which they are added to the grid. This physical
point ordering is used solely in the storage and accessing of values in the FORTRAN arr
To avoid excessive rearrangement of array entries, linked lists are used to switch betw
the Jacobian and physical grid point orderings. Since different stencils involve differe
groups of grid points, the choice of stencil type, (i.e., multiple-scale or single-scale) affe
the structure of the Jacobian, as well as the Jacobian ordering of the points. The follov
two examples and ordering choices are based upon the new multiple-scale stencils.

The first scheme, implemented on the grid in Fig. 7a, numbers all of the pointsin the b
grid, moving from the lower left to the upper right, followed by all of the points belongin
to the next finest grid level (again from lower left to upper right), and so on. In Fig. 7
the sparsity structure of the corresponding Jacobian is presented. Each box in the mat
actually anNgep x Ngepblock, and boxes occupied by black dots denote nonzero blocks. T
Jacobian’s most noticeable characteristic is its lack of the traditional block nine-diago
form. Although a block nine-diagonal structure is somewhat present in the upper left tv
thirds of the matrix, the rest does not follow any obvious pattern. A major drawback
this ordering is the large bandwidth (19 blocks, in this case), which will probably slow tl
convergence of the linear algebra solver. Nonreciprocity of grid links produces a lack
structural symmetry.

The bandwidth can be greatly reduced by choosing a point ordering in which points
close in sequence to the members of their computational stencils. This strategy motiv
the next scheme, incorporated in the LRR method and shown in Fig. 8a. The grid is
same, but the numbering now begins in the lower left corner and ends in the upper ri
The Jacobian structure produced by this new ordering appears in Fig. 8b. The bandw
has decreased to only 13 blocks, a marked improvement over the previous scheme an
which is even more substantial for larger grids. The overall Jacobian structure in Fig. 8|
much closer in appearance to the traditional block nine-diagonal form. A major advant:
to the second point-ordering scheme is that the main block diagonal is immediately adja
to an upper and a lower block diagonal. This characteristic, necessary for implementa
of the linear algebra system solver, is one which the first scheme does not possess. How
even with the desired placement of these diagonals, the standard solver still has req
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FIG. 7. First grid numbering scheme: Jacobian ordering (a) and sparsity structure of resulting Jacol
matrix (b).

modification to accommodate the placement of the remaining block “diagonals,” beca
points frequently participate in more than nine stencils. In the extreme case, a single p
may participate in as many 4§ stencils, a rare occurrence reflected by a block colum
containing 17 nonzero blocks.

One disadvantage lies in the impact of the unstructured nature of LRR grids on
efficiency with which the Jacobian matrix can be evaluated skwoicturedgrids (and the
resulting structured Jacobians), one can simultaneously evaluate groups of indeper
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FIG. 8. Second grid numbering scheme: Jacobian ordering (a) and sparsity structure of resulting Jaco
matrix (b).

columns of the Jacobian with a minimum of subroutine calls [10]; the formation of tt
column groups is based on the computational stencil width [42]. Unfortunately, lack
structure in the LRR grids dictates that this efficient technique cannot be applied :
instead necessitates writing two governing equations subroutines: one which evaluate
Ngep residuals at all grid points and one which does so at only a single grid point. T
Jacobian is still formed block column by block column, but evaluation requires one c
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to the former routine andNey calls to the latter; Jacobian formation on a tensor produc
grid using the aforementioned efficiencies requires so&eﬂ&gq+1 calls to the former
routine.

5. NUMERICAL RESULTS AND DISCUSSION

5.1. Rectangular Heated Plate

The LRR method is first applied to the problem of finding the temperature distribution
a rectangular heated metal plate. The extremely thin plate, oriented in a horizontal plan
considered two-dimensional and gravitational effects are neglected. Its physical prope
are temperature-invariant, anditis in contact with a heat source. Air, taken as incompress
flows over the plate with a velocCityair = (Uair, vair), iN Which ugi, = vgir. A top view of the
plate is displayed in Fig. 9. Because the region of high solution activity is oriented obliqu
with respect to the boundary, as shown, this problem strongly tests the capabilities of
gridding method.

By assuming a Peclet number of unity, an elliptic partial differential equation is deriv
from the energy equation, which, when nondimensionalized, becomes

aT 0T 92T 02T

T N o 1
ox tay = o T ayE Ta Y. (13)

L

T2
T

FIG. 9. Physical configuration for the rectangular heated plate problem, including five solution contol
(T=02,T=06,T=10T=14,andT =1.8).



702 BENNETT AND SMOOKE

whereq(x, y) and the boundary conditions are all chosen to give an analytical solution
T(X,y) =tanh[S(—4x — 2y + 3)] + 1. (14)

Parametes$ controls the steepness of the gradients; wfien5, as for the results presented
here,T changes from 10 to 90% of its maximum value over the space of 0.098 length ur
in a domain measuring %t 4 units, as illustrated in Fig. 9. To start the iterative solutior
process on the initial grid, the temperature distribution is initially guessed to be planar.

Error is analyzed via a grid-independent estimate over the two-dimensional phys
domain<:

Error:// |Tcalculated_ Tanalylic| dZQ- (15)
Q

The calculated error does not depend on the grid itself, in the sense that point location
not bias the result. Points which are closer together have smaller areas associated with
and thus contribute less to the overall integral than points which are farther apart.

The rectangular heated plate application demonstrates the flexibility of the LRR mett
and the effects of different parameter choices. In all cases, the initial grid is an equispe
6 x 21 mesh. Since solution contour plots for the final grids of the various runs are 1
similar to be distinguished among by the human eye, accuracy is expressed via the ¢
norm given above. No time stepping precedes the solution of the steady-state problem
each adaption requires only a single steady-state solve. A Newton toleranceldf §,
difficult to attain in practical applications, is employed here to ensure that the posed syst
are solved to high accuracy; any change in solution accuracy is a result of method paran
variation. Adaption terminates either when the termination criterion is satisfied or when
number of grid points exceeds 50,000. While parameter settings could have been e
chosen to produce numerical experiment runs requiring fewer than 50,000 points, such
either would have produced obviously inadequate results (for example, witrelarger
would have required so few adaptions that there would have been little timing and error ¢
with which comparisons among the various runs could have been made. In fact, for ir
accurate timing data, each case is run 10 times and the computing times are averagec

5.1.1. Effect of LRR Method Parameter Variatiof.hree parameters of the LRR meth-
od are now varied, one at atime, to examine their effect and purpose, beginnirtga4th,
the parameter controlling the number of layers of refined cells added around previot
refined cells. Final grids produced with different values of the layering paraigigr1
are shown in Fig. 10, starting with the case of no layering. As the number of layers increa
the interfaces between the variously refined regions of the grids fall further and further av
from the solution’s high activity areas, as anticipated. In Fig. 11, a log—log plot of error a
function of the reciprocal of the smallest grid spacipth-order accuracy is reflected by a
slope of—p. Therefore, it is apparent that for an adequate amount of layering (in this ca
Niayer1 > 2), the LRR method provides second-order accuracy, indicated by the slej2e of
on the plot. As predicted, the error indeed decreases as the number of layers increases
refined region is sufficiently wide in Fig. 10c, as compared to the region of high activil
and the final error is smallest, so the parameter seNigg,1 = 3 is retained.

The second parameter to be studiedlig the number of weight function smoothing
passes. It is expected that the more the weight functions are smoothed, the more e\
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FIG.11. Parameter study using rectangular heated plate problem: variation in the number of added refiner
layers, as controlled bMiaye.1. Numbers in parentheses refer to the LRR grid adaption number.

spatially distributed they should become. Thus, when they are used as an indicator for
refinement, the regions of high gradients and curvatures should be perceived by the me
as being less sharp, and, consequently, fewer points should be added. In practice, how
the number of points does not vary greatly from one trial to the next. This behavior ¢
be explained by the current setting Bfayer1 =3, which encourages point addition and
thus masks any effect of varying the number of weight function smoothing passes. T
evidence indicates interaction among various method parameters; the alteration ofany s
parameter may or may not have a noticeable effect, depending upon other parameter set
Figure 12 again illustrates the second-order accuracy of the LRR method and the very s
differences in overall error a¥sm is changed. Parameter settiNg,= 10 is retained.

The third and final aspect of the LRR method to be examined is the choice of discreti
tions used on the regular interior points and external boundary points, combined with
internal boundary point treatment. Not every combination is a viable one; for examg
single-scale stencils at regular interior grid points can be used only in conjunction w
interpolants at internal boundary points. For the current application, the number of point
a given adaption is observed to be independent of the discretization and the internal bo
ary point treatment, simply because no major solution differences among the methods
apparent for the first few adaptions.

Three of the five curves in Fig. 13 display results obtained with multiple-scale stencils e
various internal boundary point treatments; the remainder cover single-scale stencils |
with interpolants—schemes representative of those prominent in the local grid refinen
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FIG.12. Parameter study using rectangular heated plate problem: variation in the number of smoothing pa
Nsmt- Numbers in parentheses refer to the LRR grid adaption number.

literature. Once again, the plot illustrates that the LRR method produces second-o
accuracy, as shown by the? slope of the data, during the first four adaptions. In Adaptiol
5, the error data from the runs employing multiple-scale stencils in combination with eitt
pseudo-nine-point stencils (curve A) or five-point interpolants (curve B) continue to f:
on the line of slope-2. However, error measurements for the trial using multiple-scal
discretizations with two-point interpolants at internal boundary points (curve C) begin
deviate from the baseline of slop€?; this behavior can be attributed to the lower order o
the two-point interpolant, as compared with the five-point interpolant.

The largest deviation from the baseline is displayed by the two trials using single-sc
interpolants (curves D and E). The Adaption 5 error for these trials is almost 40% lar
than the Adaption 5 error for curves A and B, and the line segment connecting the Adapti
4 and 5 data for curves D and E has an approximate slop€elaf. These results are not
surprising, since the grid spacings used in the single-scale discretizations can be as
asAx andAy of the base grid, resulting in poor accuracy, despite the fact that the sing
scale stencils are equispaced. Another drawback of the single-scale solutions is that
require several Newton iterations, increasing their execution time, versus only one New
iteration for the multiple-scale solutions. Thus, multiple-scale stencils are preferred «
are therefore employed in all remaining LRR runs, as are pseudo-nine-point stencils a
internal boundary points.
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FIG. 13. Parameter study using rectangular heated plate problem: variation in discretizations and inte
boundary point treatments. Numbers in parentheses refer to the LRR grid adaption number.

5.1.2. Comparison of LRR and traditional gridding methodEhe base case for the
LRR method is now compared with the solutions computed on two series of globally refir
rectangular grids: equivalent tensor product (ETP) grids and fully refined (FR) grids. T
ETP grids result from extending all grid lines of a given LRR grid out to the edges of tl
domain; such grids represent those available to researchers using adaptive globally re
rectangular grids. The FR grids result from using the smallest grid spacing in a given L
grid to create a uniform, equispaced grid. Both the ETP and FR grids thus contain exa
the same refinement areas as the corresponding LRR grids, since a given LRR grid
subset of the ETP grid, which, in turn, is a subset of the FR grid. In the ETP and FR trie
the entire solution method is the same as that for the LRR trials (i.e., Newton's mett
with nested BiCG-STAB linear algebra solver). The reported times are 10-run averages
include both the time required to interpolate a guess onto the new grid from the solut
of the previous grid and the time to form and solve the governing equation on the n
grid.

Table | contains the results from the three different gridding methods. The LRR tria
errors are of comparable magnitude to those of the ETP and FR trials, with the LRR g
having slightly smaller errors throughout. In the earlier adaptions, the LRR method requi
similar solution times per point, as compared to the FR trials, while later LRR adaptic
require considerably more time per point than the FR trials. The ETP trials take consiste
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TABLE |
Rectangular Heated Plate: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts Error t(s) t/Npis
LRR 0 126 0.78641 0.08 0.00063
1 304 0.05907 0.14 0.00046
2 906 0.01250 0.54 0.00060
3 2,795 0.00303 1.88 0.00067
4 9,353 0.00075 11.41 0.00122
5 33,719 0.00021 75.60 0.00224
ETP 0 6x 21=126 0.78641 0.08 0.00063
1 11x 32=352 0.05910 0.37 0.00105
2 21x54=1,134 0.01251 0.98 0.00086
3 41x 93=3,813 0.00304 3.71 0.00097
4 81x 167=13,527 0.00076 13.23 0.00098
5 161x 321=51,681 0.00023 50.78 0.00098
FR 0 6x 21=126 0.78641 0.08 0.00063
1 11x41=451 0.05910 0.28 0.00062
2 21x81=1,701 0.01251 1.14 0.00067
3 41x 161=6,601 0.00304 5.27 0.00080
4 81x 321=26,001 0.00077 23.40 0.00090
5 161x 641=103,201 0.00026 87.60 0.00085

longer per pointthan the FR trials, most likely because the ETP grids contain cells of extre
aspect ratios which worsen the conditioning of the Jacobian matrix, leading to slov
convergence. The overall execution time is, of course, smallest for each LRR adaptio
compared to the corresponding ETP and FR solutions, because of the small numbe
grid points in the LRR trials. The Adaption 5 LRR grid, for example, contains 0.65 ar
0.33 times as many points as its ETP and FR counterparts, respectively, but produce
significant difference in accuracy.

The implementations of LRR, ETP, and FR methods require the following storage,
pressed in terms of the number of dependent variables per grid point and the total nur
of points:

Storaggrg = (9NZep+ 21Ngep+ 26) Nots (16)
Storagerp orrr = (INGep+ 17Naep+ 10.375) Nys.

In each case, the leading term represents the memory required for the Newton’s me
Jacobian matrix, and when there are more than one or two unknowns per point, this t
dominates. For the current probleMgep,= 1, resulting in

Stora = 56N
g€rr pts (17)
StOfag%Tp orFR= 36.375Npts.

Therefore, when an LRR grid contains fewer than 0.65 times as many points as the cc
sponding ETP or FR grid (as is the case for some of the above trials), the solution pro
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FIG. 14. Physical configuration for the square cavity problem.

on the LRR grid requires less memory overall. Significantly greater storage savings for
LRR method are demonstrated via the remaining application problems.

5.2. Thermally and Dynamically Driven Square Cavity Flow

The second problem to be investigated is that of flow within a differentially heated squ:
cavity, with either a stationary or a moving lid. This problem has been widely studied f
several different combinations of Grashof, Prandtl, and Reynolds numbers (see, for exan
[15, 22, 33, 36], and references therein). The cavity, shown in Fig. 14, is filled with
(Prandtl number P& 0.72), and it has two insulated horizontal walls and two uninsulate
vertical walls. The left and right vertical walls are maintained at low and high temperatur
respectively, which will set into motion a counterclockwise circulation, as long as the |
velocity is zero. When the lid is moving to the right, the thermally driven circulation mu:
compete with the dynamically forced clockwise circulation.

The steady-state flow is governed by four coupled nonlinear equations, involving
knowns of horizontal and vertical velocity @ndv), vorticity », and temperatur@ ; the
derivation can be found in [22]. Kinematic viscosityand thermal conductivity. are as-
sumed constant. The equations are nondimensionalized such that the domain becor
unit square and the temperature varies from zero to one, producing

°u  2°u Do v 0% o

2 T2 oyt @ ey oax

’

9 9 2w 9w aT
— (Uw) + — (Vw) = — + — + Gr—, 18
8x( )+ ay(vw) X2 + ay? + ax (18)
9 9 1[3%T  9°T
—UD+ —T ==| 5+
ax(u )+ ay(v ) Pr{ax2 * ayz]
where
T — T L3 (o ViplL
Gr— 9B(ThoT i coLD) ’ Pr— P\; P and Re PMuol
v v
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Variablesu, v, w, andT are now dimensionless. The boundary conditions are simple: n
slip conditions on all walls; definition of vorticity invoked along the entire boundary; an
temperatures are either prescribed directly (vertical walls) or else the fluxes vanish (|
izontal walls). Physical intuition indicates counterclockwise flow, at least when the lid
stationary, which is reflected in the initial guess for the velocity fields, as follows:

u = v/2 G*3sin(rx) cosny)

v = —v/2 G2 cogx) sin(ry). 19)

Vorticity is initially chosen to be zero, and temperature is guessed to vary linearly betwe
the vertical boundaries.

This second application problem does not have an analytical solution, but it does proy
a more realistic application for the gridding methods. The effects of adapting based
different variables are demonstrated: first, adaption is done based on gradientslyf
then on gradients ab andT, and finally on gradients of all four variables (for brevity, the
latter results are not shown). For all of the following results, many of the method parame
settings are the same as those for the previous application problem, with a few except
The number of weight function smoothing pasb&g:, is set to 2, because the gradients
are not as sharp as those for the previous problem. Now, a maximum of five adapti
is allowed, although the maximum number of grid points (for LRR) is still 50,000. Fc
all cases, the initial grid is an equispaced>d41 mesh, withAx = Ay =0.025. On each
adaptive grid, the solution process consists of 150 adaptively chosen time steps, follo
by one steady-state solve. Although the time steps are not critical to achieving converge
in several of the adaptions, standardization of the method is necessary in order to com
equal amounts of computation among the methods and from one adaption to the nex
lower execution times, the Jacobian matrix is evaluated only at every 10th time step.

5.2.1. Comparison of LRR and traditional gridding methods for the case of natur
convection: Ra=10*. For the problem of thermally driven flow in a square cavity with a
stationary lid (Re= 0), the solution strategy includes a single steady-state solve on the ini
grid, and the Newton tolerance for all cases is 10~°. There can be no error measurement
since the analytical solution is not known. However, a chosen physical quantity, suct
the maximum absolute value of vorticity, denoted ®¥max can be monitored for each set
of results. The Rayleigh number (ReGr- Pr) is chosen as f0which allows comparison
with published data [15, 22]; note that some data [15] have been adjusted so that the
in accordance with the current nondimensionalization.

Figure 15 displays profiles af and v along the cavity vertical and horizontal mid-
planes, for an LRR Adaption 5 grid and the corresponding ETP and FR grids, along w
a benchmark solution [15] and data from a vorticity—velocity formulation [22]. The latte
two are both calculated on equispaced rectangular grids. While the LRR data shown |
are from adapting based an there are no visible differences between these solutions al
those obtained on any of the final adapted grids in which different adaption variables w
chosen. The figure shows excellent agreement among the different datasets. As expec
counterclockwise flow pattern has developed.

Figure 16 shows vorticity contours calculated on LRR Adaption 5 (adaption based
w); it is clear that refinement indeed occurs in regions of rapid change Dhat the flow
is primarily circulating, with boundary layers along the walls, is evidenced by the lar
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FIG. 15. Profiles ofu andv along the cavity vertical and horizontal mid-plangs<0.5 andy

tively) for Ra= 10* (natural convection).
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FIG.16. Numerical isopleths of vorticity«) for Ra:

tion 5, formed by adapting based aen(b).
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FIG. 17. Numerical isotherms for Ra 10* (natural convection) (a), calculated on LRR Adaption 5, formed
by adapting based anandT (b).

negative vortex appearing near the center and the smaller positive vortices along eac
the four walls. Figure 17 displays isotherms obtained on LRR Adaption 5 (adaption ba
onw andT), along with the grid itself. The grid undergoes refinement along the walls
resolve the boundary layers, and additional refinement occurs in regions where the vort
and/or temperature is rapidly changing.

Table Il presents the results obtained by adapting based wsing the LRR method,
as well as results on corresponding ETP and FR grids. Immediately apparent is the
that the LRR|w|max Values are extremely close to the ETP and FR values: within 2% f
Adaption 1 and within 1% for all subsequent adaptions. This high degree of accurac

TABLE Il
Square Cavity with Ra=10" (Natural Convection)
Adaption on w: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts || max t(s) t/Nps
LRR 0 1,681 4245 44 0.026
1 3,063 508.3 333 0.109
2 4,949 547.1 767 0.155
3 5,919 547.8 671 0.113
4 6,585 547.6 686 0.104
5 7,143 545.6 830 0.116
ETP 0 41x 41=1,681 4245 44 0.026
1 65x 81=5,265 500.2 592 0.112
2 95x 139=13,205 552.6 2358 0.179
3 95x 145=13,775 552.5 794 0.058
4 97x 149=14,453 552.7 1022 0.071
5 113x 155=17,515 544.0 2545 0.145
FR 0 41x 41=1,681 4245 44 0.026
1 81x 81=6,561 498.9 706 0.108

2,3,4,5 161x 161=25,921 543.2 3618 0.140
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TABLE Il
Square Cavity with Ra = 10" (Natural Convection)
Adaption on w and T: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts [@]max t(s) t/Nps

LRR 0 1,681 4245 44 0.026
1 3,181 508.6 347 0.109

2 5,371 548.8 816 0.152

3 8,189 550.9 994 0.121

4 11,123 546.2 1,473 0.132

5 15,299 568.6 2,660 0.174

ETP 0 41x 41=1,681 424.5 44 0.026
1 65x 81=5,265 500.2 617 0.117

2 95x 141=13,395 552.6 2,412 0.180

3 97x 161=15,617 542.2 2,026 0.130

4 153x 161=24,633 543.4 2,263 0.092

5 169x 239=45,461 572.3 8,853 0.195

FR 0 41x 41=1,681 424.5 44 0.026
1 81x 81=6,561 498.9 706 0.108

2,3,4 161x 161=25,921 543.2 3,618 0.140

5 321x 321=103,041 567.4 20,851 0.202

achieved on LRR grids with 0.58, 0.37, 0.43, 0.46, and 0.41 as many points as the traditi
ETP grids, for Adaptions 1 through 5, respectively; the LRR grids have 0.47, 0.19, O.:
0.25, and 0.28 as many points as the equispaced FR grids. For any given adaption, the
per-point solution times are of the same order as those for the corresponding ETP and
grids, with the only exceptions occurring when the ETP grids do not change greatly fr
one adaption to the next (and thus those solutions converge more quickly). The overall L
solution times are much shorter than those for the ETP and FR runs.

Whenw andT are the adaption variables, asin Table Ill, there is again very little differen
among thelw|max values obtained using the LRR, ETP, and FR grids. For Adaptions
through 3, the LRR values are within 2% of those obtained on the corresponding ETP
FR grids, and for Adaptions 4 and 5 the values differ by less than 1%. At the same time,
LRR grids have significantly fewer points than the other grids; for example, the Adaptiot
grid has 0.34 times as many points as its ETP counterpart and 0.15 times as many p
as its FR counterpart. Because the LRR per-point solution times are comparable tc
sometimes even faster than, the per-point solution times on the ETP and FR grids, the |
method finds the solution much more quickly than the other methods. Finally, the LRR gr
(and thus, the ETP and FR grids) contain more points than wh&as the only adaption
variable, which is to be expected.

Adaption has also been performed on all variables simultaneously, and those results
play characteristics similar to the above (a very accurate representatjamn.gf, while
using a fraction of the number of points used in the corresponding ETP and FR gric
Regardless of the adaption variable(s) chosen, plots of the final solutions are indistingu
able from one another. Memory requirements are examined at the end of the next sect

5.2.2. Comparison of LRR and traditional gridding methods for the case of mixed cc
vection: Ra= 10* and GI/R€ =0.5. Because the problem of thermatinddynamically
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driven flow in a square cavity is more challenging than the previous one, the solution st
egy now includes 150 time steps on the initial grid, as well as on all subsequent grids.
reader is reminded that these time steps are not actually needed for convergence on
of the earlier adaptions, but that valid comparisons require standardization of the amo
of calculation. The Newton tolerance is<110~4, except for some ETP computations (in-
dicated by table footnotes) which are solved to 20~4; these would have required further
time stepping in order to have met the original tolerance. As in the natural convection c:
there is no analytical solution, but a physical quantity (hefg,, Since|w|maxis infinite) is
used to gauge solution accuracy. The choices o£R#&* and GyRe? = 0.5 (Re= 166.667)
permit direct comparison with published data [22].

Some minor differences exist among the solutions found on grids generated via diffel
adaption variables, but the general shapes of the solution profiles are the same. Figu
displays the profile ofi along the cavity’s vertical mid-plane, using results from LRR
Adaption 4 based o andT, solutions from the corresponding ETP and FR runs, as we
as data from [22]. (Adaption 4 results are illustrated instead of Adaption 5 results, sim
because the FR calculation corresponding to LRR Adaption 5 exceeds the 2 GB RAM lirr
The datasets show good agreement, given the sharpness of the gradients as compa
the natural convection case. Itis evident that the counterclockwise circulation generate
buoyancy effects of the differentially heated vertical walls survives only in the lower pz
of the cavity, while the rapid movement of the top wall controls flow in the upper part.

p
<D

«-— LRR Grid 4
----ETP Grid 4
—:=--FR Grid 4
......... Ref. 22

-100.0 50.0 100.0 150.0 200.0

A B
VeV

FIG. 18. Profiles ofu along the cavity vertical mid-plane & 0.5) for Ra= 10* and GyRe& =0.5.
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FIG. 19. Numerical isopleths of vorticity«) for Ra= 10* and GyR€& =0.5 (a), calculated on LRR Adap-
tion 5, formed by adapting based ar(b). Close-up of upper left corner of domain (c) displays base grid plus five
levels of refinement.

Figure 19 displays vorticity contours calculated on LRR Adaption 5 (adaption based
w), along with the grid itself. As expected, the grid is highly refined in the upper left and rig
corners, and the close-up in (c) shows the presence of the base cell size plus five refine
levels. Figure 20 shows isotherms calculated on LRR Adaption 5 (adaption baseshaoin
T), and effect of the cavity lid motion is indeed apparent. The grid, shown in (b), displa
refinement in the regions of highandT activity, and it again comprises the base grid plus
five levels of refinement. Although not shown here, results from adapting based on all f
dependent variables display similar trends.

Table IV presents the results from LRR adaptions performed basesd amly, along
with results from corresponding ETP and FR grids. Excellent agreement (within 1% frc
Adaption 2 on) is observed among thg,x value on each LRR grid and its ETP and FR
counterparts, but the values are ever-increasing, symptomatic of the fact that the ada,
process is not complete by Adaption 5. The LRR Adaption 5 grid contains roughly one-th
as many points as its ETP counterpart, and for Adaptions 1 through 5, respectively, the L
grids contain only 0.38, 0.14, 0.05, 0.02, and 0.01 times as many points as the correspor
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FIG. 20. Numerical isotherms for Ra 10* and GyRe* = 0.5 (a), calculated on LRR Adaption 5, formed by
adapting based oa andT (b).

equispaced FR grids. Comparisons of timings with ETP grids for later adaptions are
valid because of the looser ETP tolerance, which requires less computational effort.
difficulty experienced by these ETP runs in meeting the originallD~* tolerance most

likely stems from cells of extremely high or low aspect ratio, present in the ETP grids or
and leading to poorly conditioned Jacobian matrices. LRR and FR per-point timings

TABLE IV
Square Cavity with Ra=10" and Gr/Re?=0.5
Adaption on w: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npss Umax t(s) t/Nps
LRR 0 1,681 22.07 128 0.076
1 2,517 21.34 284 0.113
2 3,593 29.26 333 0.093
3 5,074 35.57 540 0.106
4 7,792 40.72 1,002 0.129
5 15,451 45.21 3,895 0.252
ETP 0 41x 41=1,681 22.07 128 0.076
1 77x 55=4,004 23.15 429 0.107
2 112x 72=28,064 29.13 825 0.102
3 146x 98= 14,308 35.73 1,626 0.114

4 191x 126= 24,066 41.22 2,776 0.115

5 265x 167= 44,255 45.59 5,562 0.126
FR 0 41x 41=1,681 22.07 128 0.076
1 81x 81=6,561 22.06 663 0.101
2 161x 161=25,921 29.15 2,637 0.102
3 321x 321=103,041 35.76 14,770 0.143
4 641x 641=410,881 41.17 26,608 0.065

5 1281x 1281=1640,961 -5 —b —b

2 Converged to a tolerance of only:21074.
b Size of problem exceeded 2 GB RAM limit.



716 BENNETT AND SMOOKE

TABLE V
Square Cavity with Ra=10" and Gr/Re?=0.5
Adaption on w and T: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts Umax t(s) t/Npts
LRR 0 1,681 22.07 128 0.076
1 3,275 23.77 372 0.114
2 4,881 29.22 455 0.093
3 7,833 35.62 830 0.106
4 13,403 40.81 1,866 0.139
5 24,959 45,36 4,597 0.184
ETP 0 41x 41=1,681 22.07 128 0.076
1 77x 78=6,006 22.04 626 0.104
2 117x 97=11,349 29.16 1,077 0.095
3 157x 118=18,526 35.75 1,783 0.096
4 212x 187=239,644 41.20 4,302 0.109
5 308x 244=175,152 45.79 10,1453 0.13%
FR 0 41x 41=1,681 22.07 128 0.076
1 81x 81=6,561 22.06 663 0.101
2 161x 161= 25,921 29.15 2,637 0.102
3 321x 321=103,041 35.76 14,770 0.143
4 641x 641=410,881 41.17 26,608 0.065
5 1281x 1281=1,640,961 b —b —b

@ Converged to a tolerance of only210-4.
b Size of problem exceeded 2 GB RAM limit.

roughly comparable in all adaptions except Adaption 4, in which the LRR per-point timil
is nearly twice as large. Comparison of LRR Adaption 5 results cannot be made with

corresponding FR grid, since the FR problem is too large for the available computatio
resources. Overall, the LRR runs consistently require a small fraction of the CPU time of
ETP and FR runs, while maintaining accuracy to within 1%, as measured by valugs.of

Whenw and T are the adaption variables, as in Table V, the values,gf produced
using the LRR method again mirror those obtained on the corresponding ETP and FR g
to within 1% from Adaption 2 on. (The continual increasesgfx with grid number again
reflects the artificially imposed termination of the adaption process after the fifth gri
This excellent agreement is achieved on LRR grids with 0.50, 0.19, 0.08, 0.03, and C
times as many points as their FR counterparts, with much shorter overall solution times
LRR. As before, the FR counterpart of LRR Adaption 5 is too large for the available 2 C
RAM workstation. Also, because of ETP convergence problems, timing comparisons
be made only for the adaptions in which the tolerances are the same among LRR, ETP
FR;inthese cases, the per-point solution times are comparable. In general, the LRR me
consumes much less CPU time than the other methods; for example, LRR Adaption 4 t:
0.07 as much time as its equispaced FR counterpart.

The storage amounts needed for each of the methods, presented in Eq. (18), are writt
terms ofNgep, the number of dependent variables per point, lpe the number of points.
When Ngep=4, as in the square cavity problem (for either mixed or natural convectior
the requirements simplify to

Storagggrr = 254Nyt

(20)
Storagere or = 222375Npts,
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which do not differ as widely as in the rectangular heated plate problem. Whenever
LRR grid has fewer than 0.88 times as many points as its ETP or FR counterparts,
LRR solution process consumes less memory than the ETP or FR solution. Theref
all LRR solutions presented above for the two types of square cavity flow not only consu
much less CPU time, but LRR memory usage ranges from approximately 50% down tc
some cases, 1% that of the traditional gridding methods, as represented by the ETP an
grids.

5.3. Rich Axisymmetric Laminar Bunsen Flame with Complex Chemistry

The third problem to which the LRR solution-adaptive gridding method is applied
that of a rich full-chemistry axisymmetric laminar Bunsen flame, which is assumed
have reached a steady state at atmospheric pressure. Like the square cavity flow, this
application does not have an analytical solution, but it is again a realistic problem &
poses a difficult challenge for adaptive gridding techniques. In general, the major spe
mass fraction gradients in axisymmetric lamipsgemixedlames are an order of magnitude
greater than those in axisymmetric lamintffusionflames. Moreover, theninor species
gradients in premixed flames are larger by yet another order of magnitude. The sharp
of these gradients, as well as the fact that they all occur in the same spatial region (i.e.,
the flame front), make the axisymmetric laminar Bunsen flame an ideal subject for adap
gridding.

The burner consists of a central jet, from which a homogeneous methane—air mix
issues, and a surrounding concentric jet, from which pure air flows. The composition
the methane—air mixture is 11.5 molar percentage, @rd 88.5 molar percentage air,
which results in an overall equivalence ratio &= 1.243. Because the fuel-to-oxidizer
ratio is rich, the premixed flame which forms atop the coflowing jets (often referred to
a “Bunsen cone” [30]) is accompanied by a diffusion flame “halo” which forms furthe
downstream. As illustrated in Fig. 21, the premixed fuel-air jet’s inner radiys49.5 cm

AIR AIR

FUEL
& AIR

FIG. 21. Physical configuration for the axisymmetric Bunsen flame.
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and its wall thickness isje1=0.05 cm. The coflowing jet’s inner radiustig = 3.0 cm,
marking the radial extent of the computational domain. Computations are performec
a two-dimensional domain with axial boundariezat 0 andz=25 cm; when choosing
boundary conditions, the latter can be considered “infinitely” far from the flame, since t
flame length does not exceed 1 or 2 cm.

The velocity profile across the inner jet exit is parabolic, with the average axial velc
ity v, =50 cm s1. The, profile across the outer jet exit increases from an innermo:
minimum of zero tow, 0 =50 cm s, simulating a plug flow with a thick inner boundary
layer [5]. Across the entire burner surface, radial velogity= 0 cm s%, while bothv, and
v, vanish across the thickness of the jet wall. The Reynolds number within the inner
is approximately 494. The present model employs @l@mical mechanism involving 16
species and 46 reactions [43]. All thermodynamic, chemical, and transport properties
evaluated using subroutine libraries [23]. Forward reaction rate constants are determ
from modified Arrhenius expressions containing exponential temperature dependence,
reverse rate constants are calculated from the corresponding forward rate constant:
the equilibrium constants [29]. The present model also includes an optically thin radiat
submodel [18, 25, 26].

As detailed in [4, 5], the governing equations are formulated via a vorticity—velocity a
proach[19], in which the pressure gradient is eliminated by taking the curl of the moment
equation. Advantages of this formulation, as well as further examples of its applicatior
combustion problems, may be found in [4, 5, 19] and the references therein. The gover
equations, not repeated here, are a set of 20 highly nonlinear, strongly coupled, elli
partial differential equations, originally derived from the conservation equations for ma
momentum, energy, and individual species mass. They involve 20 dependent variable
each grid point: radial velocity; ; axial velocityv,; vorticity »; temperaturdl ; and mass
fractionsY of the 16 species. The boundary conditions, aside from the highealues
for the inner and outer jets, are the same as those for the rich flame in [5]. Because of
governing equations’ extreme nonlinearity, the full-chemistry solution on the starting g
is formed with the aid of a one-step chemistry starting estimate and a time-relaxation |
cess (see [4, 5, 41]). Execution times for all cases computedlgiefrom the converged
starting-grid solution, and all are normalized by the time taken to reconverge initially
that solution (i.e., the Jacobian evaluation time).

For this application problem, the effects of adapting based on different variables
displayed: first, adaption is performed based on gradient:gf only (sharp gradients
of Ycn, occur at the premixed flame front), then on gradient¥@f, and T, and finally
on gradients of all 20 variables (for brevity, the latter results are not shown). Many of t
parameter settings are retained from the previous problems, with the following differenc
Because of the sharp gradients and the tendency of the flame front to migrate (during
earlier adaptions)Nsm is reset to 10 andNjaye;1 iS set to 5. For the 2 GB RAM IBM
RS/6000-590 workstation used, the limiting number of grid points for this 20-variabl
problem is 62,000. For all cases, the initial grid is a nonequispaced tensor product
of size 58x 70. Knowledge that a flame will form somewhere above the inner jet is us
to impose a mesh which is uniformly spaced with =0.02 cm for Q00<r <0.80 cm,
with increasingly larger spacing for8 <r < 3.00 cm; it is also uniformly spaced with
Az=0.02 cm fromz=0.00 toz=0.80 cm, with wider spacing for 0.88z < 25.00 cm.

(A small enough spacing is necessary to sustain the flame, but an equispaced FR |
cannot be used because it would contain too many points.)
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calculated on various grids, for the axisymmetric Bunsen flame. Only a portion of the domain is shown.

For each noninitial grid, the solution iterate is advanced in time via 200 adaptively cho:

time steps, beginning witht =1 x 10-8. As before, these time steps are requiredon

every grid to ensure convergence, but they are taken anyway to standardize the amot
computation and validate comparisons. In practice, the LRR grids usually require only
to 100 time steps to bring the solution iterate into the convergence domain of the ste:

state Newton solve, but the ETP grid solutions oftlenequire the full 200 time steps. If

certain criteria are met, each formed Jacobian is used for three successive time steps
time steps on each noninitial grid are followed by steady-state Newton’s method, with
final solution computed to a tolerance ok11.0~*, which is quite reasonable for a practical

combustion problem.
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FIG. 23. In the axisymmetric laminar Bunsen flam&,, isopleths have been computed on a series of LRR
adapted grids, formed wittt,,, as the adaption variable. Shown is the region near the inner jet exit (only a portic
of the computational domain but the part in which all of the adaption occurs), for (a) Adaption 0, (b) Adaption
(c) Adaption 2, and (d) Adaption 3. A close-up of the Adaption 3 grid is displayed in (e).

5.3.1. Comparison of LRR and traditional gridding methodAs in the square cavity
flow problem, there can be no error measurement since the analytical solution is not knc
However, the flame lengthy, defined as the-axis position at whiclYcy, first drops below
a preset small value (16), is monitored. Althoughy,, v,, , T, and the mass fractions
of all 16 chemical species have been calculated for each run, only resufts Yer,, and
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FIG. 23—Continued

Yon are presented in order to give a flavor of the degree of problem difficulty and the le
of solution accuracy. Readers interested in the physical interpretation of results for sin
flames may pursue [4, 5].

The acute need for adaptive gridding in modeling the axisymmetric Bunsen flame
apparent from Fig. 22, which depictg, andYon along the flame’s axis of symmetry as
functions of axial distance above the burner. In Fig. 22a, at the premixed flame front,
Ych, profile plummets from 99% of its peak value (&t 0.6300 cm) to less than 1% of
peak (az=0.6950 cm) over an axial distance of only 0.065 cm. This rapid decrease occ
not only on the centerline of the flame but also across the entire surface of the Bunsen c
For each of the four datasets shown, the flame thickness is spanned axially by 14 grid pc
and in LRR Adaption 3 (not shown), itis covered by 27 points. To attain the latter resoluti
with a fully refined grid would require over 12 million points! In Fig. 22b, tig, profile
increases steeply near the region in whichYpg, profile undergoes its rapid drop. Overall,
the Yon profile contains two peaks: a spike located near 0.80 cm, signifying the prese
of a premixed flame front; and a gradual rise and fall centered around 2.0 cm, indicat
the diffusion flame halo. Not unexpectedly, thg, gradients in the premixed flame are an
order of magnitude larger than those in the diffusion flame. Through examination of |
governing equations’ truncation errors [5], it can be determined that, in order to comp
flame positions correctly, the premixed flame front requires significantly higher resoluti
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TABLE VI
Rich Axisymmetric Laminar Bunsen Flame with Complex Chemistry
Adaption on Ycy,: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts L¢ (cm) t t/Npis

LRR 0 4,060 0.520 1.0 0.0002
1 6,522 0.640 37.9 0.0058
2 14,499 0.700 95.6 0.0066
3 41,802 0.738 384.6 0.0092
ETP 0 58x 70=4,060 0.520 1.0 0.0002
1 95x 104=19,880 0.650 59.6 0.0060
2 160x 183=29,280 0.730 218.2 0.0075

3 284x 347=98,548 -2 —2 —a

FR 0 151x 1251=188,901 -2 —2 —a

1 301x 2501= 752,801 -2 —2 —2

2 601x 5001= 3,005,601 -2 —2 —2

3 1201x 10001=12,011,201 -2 —2 —a

2 Size of problem exceeded 2 GB RAM limit.

than the diffusion flame. Thus, all profiles in Figs. 22a and 22b coincide at the premix
front, where they have the same high level of resolution, with minor differences appar
in the post-diffusion-flame region, where dataset resolutions differ.

Figure 23 illustrates a series of LRR grids, portions of which are shown in the rig
halves of (a) through (d), generated via adaptionYgp,, as well as the corresponding
Ycn, isopleths, whose mirror images are shown in the left halves. The isopleths becc
smoother and better resolved as the grid is progressively refined, and it is indeed c
that refinement is occurring in the region of hiyb,, activity. The Adaption 3 grid, for
example, appearing in (d) and in greater detail in (e), contains the base grid plus three Ie
of refinement. The most obvious feature, however, as the grid undergoes refinement, is
the Bunsen flame’s lenglty increases from 0.520 cm on the initial grid, to 0.640 and 0.70
cm on successive grids, ending with 0.738 cm on the LRR Adaption 3 gridrateef

TABLE VII
Rich Axisymmetric Laminar Bunsen Flame with Complex Chemistry
Adaption on Yy, and T: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts L¢ (cm) t t/Npis

LRR 0 4,060 0.520 1.0 0.0002
1 10,087 0.640 60.2 0.0060
2 29,262 0.710 200.8 0.0069
ETP 0 58x 70=4,060 0.520 1.0 0.0002
1 115x 132=15,180 0.650 84.5 0.0056
2 225x 260=58,500 0.675 341.8 0.0058

FR 0 151x 1251=188,901 —2 —2 —2

1 301x 2501= 752,801 —a —a —a

2 601x 5001= 3,005,601 -2 —2 —2

2 Size of problem exceeded 2 GB RAM limit.
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increase, however, slows as the grids become more refined, indicating that a threshold ley
refinement exists; on grids refined beyond this lekelyill remain unchanged. (Computer
memory constraints prevented the computation of LRR solutions beyond Adaption 3.) T
phenomenon of increasing flame length is simply explained in [4, 46] for a Bunsen fla
modeled with one-step chemistry, and a similar explanation is given in [5] for Bunsen flan
with complex chemical mechanisms. These references conclude that the most dccura
is that found on the most refined grid (in this case, that of Adaption 3).

Table VI presents the results obtained by adapting bas&@dgrusing the LRR method,
as well as results on corresponding ETP grids; the FR grids contained far too many po
exceeding the available computational resources. Immediately obvious is the fact that,
for the ETP grids, the flame length increases as the mesh spacing becomes finer, wi
therate of increase progressively lessening. As an indication of the precision of the LF
method, the values fdrs computed on the LRR Adaptions 1 and 2 grids are within 1.
and 4.1% of their ETP counterparts, with the LRR grids containing 0.66 and 0.50 as m
points as their ETP counterparts. (The LRR Adaption 3 grid contains 0.42 as many point
its too-large ETP counterpart.) It is no surprise that the FR grids exceed available mem
since the LRR grids contain 0.02, 0.009, 0.005, and 0.003 times as many points as
FR counterparts! The LRR solution times are roughly half those of the correspond
ETP grids, with the per-point solution times smallest for the LRR grids. In Table VII, fc
adaption based on botfz, andT, similar behaviors are observed, except that the per-poil
timings for the LRR grids are slightly longer than those for the corresponding ETP gri
although overall the LRR solutions are still considerably faster because they employ fe
points.

Figure 24 compares the appearances of the grids when adaption occurs ¥gjy, s
shown in (a), and when adaption occurs on bath, andT, as shown in (b). In each case,

Ib

FIG. 24. Inthe axisymmetric laminar Bunsen flame, computed isotherms are displayed along with portion
LRR grids, formed withYc, as the adaption variable (a), and formed wigh, andT as the adaption variables (b).
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a mirror image of the computed isotherms is displayed in the figure’s left half. The grid
(b) contains additional refinement in the region of the diffusion flame halo, downstre:
of the premixed flame front. Despite this difference, the locations of the isotherms (e
isopleths of other dependent variables) do not change significantly. This conclusion :
holds when examining the results obtained from adaption performed on all 20 depenc
variables (not shown).

The storage requirements for the basic implementations of each of the methods have
given earlier in Eq. (16). Substitutinqep= 20 into (16) and adding the extra memory
required for the thermodynamic and transport properties, namelj¥20%roduce final
storage requirements of

Storaggrr = 4251Nps
(21)

for the axisymmetric laminar Bunsen flame. For a given number of grid points, the
values indicate that the LRR solution process requires only 1.023 times as much m
ory as on an ETP or FR gridiith the same number of pointSherefore, whenever an
ETP or FR grid requires more than 1.023 times the number of points as the LRR ¢
from which it was formed, the LRR grid will consume less memory, as is the casdl for
LRR/ETP/FR grid triples presented. It is worth noting thdthoutthe LRR method, the
level of refinement present in the Adaption 3 grid (adaption base@g) would not have
been possible because of the storage requirements of the corresponding ETP and FR
The remainder of Tables VI and VII contain further examples of memory savings with t
LRR method.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has presented the LRR solution-adaptive gridding method, which has b
developed for the solution of discretized systems of coupled nonlinear elliptic partial c
ferential equations. New discretizations have been derived for use on its unstructured g
and the resulting discretized set of governing equations has been solved using a dan
modified Newton’s method. The adaptive technigue has as its basis the principle of we
function equidistribution, upon which traditional tensor product (globally refined recta
gular) adaptive gridding methods are also founded. The LRR method has been apy
first to a simple test problem to which the analytical solution is known. The new multipl
scale discretizations have been seen to produce a smaller overall error than the single-
discretizations commonly used on unstructured grids, and the layering technique has
reduced errors while increasing grid robustness. LRR results are comparable in accura
those obtained on larger equivalent tensor product (ETP) and equispaced fully refined (
grids.

A realistic nonreacting application, that of flow in a thermally and dynamically drive
square cavity, has also been examined using the LRR method, as well as the correspol
ETP and FR grids. Regardless of whether the cavity lid is stationary (natural convect
case) or moving (mixed convection case), the LRR, ETP, and FR results display excel
agreement among values of the monitor quantities, and mid-plane velocity profiles are
very close to previously published data, especially in the natural convection case. Fol
results, the LRR grid solutions converge more quickly than their ETP and FR counterpe
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and in several cases even te-point solution times are shorter for LRR. LRR grids used
one-half to one-third the number of points as their ETP counterparts, and, on average
LRR grids consumed half the total computer memory of their ETP equivalents. Furtl
comparison reveals that LRR grids used one-hatfrtehundredthas many points as their
FR counterparts, with commensurate memory savings.

The final application—a rich axisymmetric laminar Bunsen flame encompassing cc
plex chemistry, multicomponent transport, and an optically thin radiation submodel—or
again demonstrates the critical need for a method such as the LRR method, since ne
the ETP nor FR grids are capable (within the computer memory constraints) of the le
of refinement achieved with the LRR grids. While the rich Bunsen flame studied he
comprises both a premixed flaraad a diffusion flame, the gradients present in premixec
flames are an order of magnitude larger than those found in diffusion flames. Theref
very fine spacing is seen to be especially important near the premixed flame front, s
the latter’s adequate resolution strongly influences flame length. Layering also plays
important role because of the migration of the premixed flame front during the refinem
process. In general, the LRR method used less than half the memory and CPU tim
that required by the ETP grids, without compromising solution accuracy. (The ETP ¢
corresponding to LRR Adaption 3 was too large for the computational resources availak
In addition, the results are seen to be largely independent of the choice of adaption
able(s). Comparisons were not possible with the FR grids, each of which greatly excee
computational resources, containing from 50 to 300 times as many points as their L
counterparts.

The list of practical problems to which the LRR method can be successfully appli
is lengthy. In [4, 5, 46], the new adaptive technique is applied to simple-chemistry &
full-chemistry axisymmetric laminar Bunsen flames, both lean and rich, as well as to
axisymmetric diffusion flame with several different chemical mechanisms. In the futu
flames including better radiation submodels, in which the number of operations nee
to compute the radiation terms scales as the square of the number of grid points, ca
examined more efficiently using LRR grids. Soot models, which consume large amount
computer time with traditional adaptive gridding methods, may then be added. Furtherm
aside from an expected increase in the level of complexity of the discretizations and
unstructured nature of the grid, extension of the LRR method to three dimensions app
feasible. In this latter context, the benefits of using LRR solution-adaptive gridding, m
sured in terms of both decreased computer storage requirements and lower execution t
should be even greater than those in two dimensions.
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